76 research outputs found

    Acupuncture treatment for post-stroke depression: Intestinal microbiota and its role

    Get PDF
    Stroke-induced depression is a common complication and an important risk factor for disability. Besides psychiatric symptoms, depressed patients may also exhibit a variety of gastrointestinal symptoms, and even take gastrointestinal symptoms as the primary reason for medical treatment. It is well documented that stress may disrupt the balance of the gut microbiome in patients suffering from post-stroke depression (PSD), and that disruption of the gut microbiome is closely related to the severity of the condition in depressed patients. Therefore, maintaining the balance of intestinal microbiota can be the focus of research on the mechanism of acupuncture in the treatment of PSD. Furthermore, stroke can be effectively treated with acupuncture at all stages and it may act as a special microecological regulator by regulating intestinal microbiota as well. In this article, we reviewed the studies on changing intestinal microbiota after acupuncture treatment and examined the existing problems and development prospects of acupuncture, microbiome, and poststroke depression, in order to provide new ideas for future acupuncture research

    The Prognostic Significance of NEK2 in Hepatocellular Carcinoma: Evidence from a Meta-Analysis and Retrospective Cohort Study

    Get PDF
    Background/Aims: Numerous studies have shown that NIMA-related kinase 2 (NEK2) expression in hepatocellular carcinoma (HCC) tissue is associated with survival and clinicopathological features; however, the evidence remains inconclusive. Thus, we aimed to further explore the prognostic and clinicopathological significance of NEK2 expression in HCC using a two-part study consisting of a retrospective cohort study and a meta-analysis. Methods: In the cohort study, NEK2 expression in 206 HCC samples and adjacent normal liver tissues was detected by immunohistochemistry (IHC). Patients were divided into a high NEK2 expression group and a low NEK2 expression group by the median value of the immunohistochemical scores. The Kaplan–Meier method with the log-rank test was used to analyze survival outcomes in the two groups, and multivariate analysis based on Cox proportional hazard regression models was applied to identify independent prognostic factors. In the meta-analysis, eligible studies were searched in PubMed, EMBASE, Web of Science, and CNKI databases. STATA version 12.0 (Stata Corporation, College Station, TX) was used for statistical analyses. Results: The IHC results of our cohort study showed higher NEK2 expression in HCC tissues compared with adjacent normal liver tissues. Multivariate analysis revealed that high NEK2 expression was an independent risk factor for poor overall survival (OS) [hazard ratio (HR) = 1.763; 95% CI, 1.060–2.935; P = 0.029] and disease-free survival (DFS) [hazard ratio (HR) = 1.687; 95% CI, 1.102–2.584; P = 0.016] in HCC patients. A total of 11 studies with 1,698 patients were enrolled in the meta-analysis, consisting of 10 studies from the database search and our cohort study. The pooled results revealed that high NEK2 expression correlated closely with poor OS among HCC patients (HR = 1.47; 95% CI, 1.21–1.80; P < 0.01), and DFS/recurrence-free survival (RFS) (HR = 1.92; 95% CI, 1.41–2.63; P < 0.01). Additionally, our meta-analysis also showed that the proportion of HCC patients with high NEK2 expression was greater in the group with larger tumors (> 5 cm) than in the group with smaller tumors (≤ 5 cm) [odds ratio (OR) = 2.02; 95% CI, 1.13–3.64; P < 0.01). Conclusion: Our study demonstrated that high NEK2 expression is a risk factor for poor survival in HCC patients. More prospective, homogeneous, and multiethnic studies are required to validate our findings

    Off-line evaluation of indoor positioning systems in different scenarios: the experiences from IPIN 2020 competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Off-Line Evaluation of Indoor Positioning Systems in Different Scenarios: The Experiences From IPIN 2020 Competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001.Peer reviewe

    Analysis of Multi-Tendon Friction-Based Composite Anchorage Device for CFRP Cables and Its Anchorage Mechanism

    No full text
    Carbon fiber-reinforced polymer (CFRP) cables are anticipated to be employed in larger, longer, and more durable structures in the engineering field. However, its anchorage devices and mechanism should be appropriately developed and improved. At present, mainly relying on the adhesive force, most anchorage devices may lose their efficiency because of adhesive aging and failure or the slip of an individual tendon. A friction-based composite anchorage device with an integrated bearing of inner cone filler (i.e., load transfer media (LTM)) bonding and a single extruding anchor is proposed, and the anchorage mechanism is examined for Φ7 CFRP cables of strength 2400 MPa. Firstly, sufficient conditions for anti-slip failure of CFRP tendons in the anchorage zone are derived by assuming uniform LTM bonding. The obtained results reveal that the smaller inner pore size of the barrel leads to higher efficiency. Additionally, the maximum efficiency depends on the friction coefficient of the contact surface, the inner cone angle of the barrel, and the diameter and quantity of the CFRP tendons. The necessary conditions for the safety of the CFRP tendon anchorage zone are carefully obtained based on the Tsai–Wu failure criterion. It is concluded that the compressive stress of CFRP tendons in the anchorage zone should gradually increase from the load-bearing end to the no-loading end. Additionally, the relations among the anchorage efficiency coefficient and the CFRP tendon diameter d, the anchorage length l, the dip angle of LTM external conical surface α, and the friction angle β are derived based on the equivalent failure principle. The CFRP cables of four specifications (i.e., with Φ12, Φ19, Φ37, and Φ121 tendons) are designed under theoretical guidance, and eight static tests are carried out for more verification studies. The test results indicate that the anchorage efficiency coefficient of designed anchorage devices can be over 90%, and even up to 96.8%. Further, the failure modes are divergent destruction, which verifies the reliability of friction-based anchorage devices and provides a solid theoretical foundation for the design and engineering applications of CFRP cables

    Analysis of Multi-Tendon Friction-Based Composite Anchorage Device for CFRP Cables and Its Anchorage Mechanism

    No full text
    Carbon fiber-reinforced polymer (CFRP) cables are anticipated to be employed in larger, longer, and more durable structures in the engineering field. However, its anchorage devices and mechanism should be appropriately developed and improved. At present, mainly relying on the adhesive force, most anchorage devices may lose their efficiency because of adhesive aging and failure or the slip of an individual tendon. A friction-based composite anchorage device with an integrated bearing of inner cone filler (i.e., load transfer media (LTM)) bonding and a single extruding anchor is proposed, and the anchorage mechanism is examined for Φ7 CFRP cables of strength 2400 MPa. Firstly, sufficient conditions for anti-slip failure of CFRP tendons in the anchorage zone are derived by assuming uniform LTM bonding. The obtained results reveal that the smaller inner pore size of the barrel leads to higher efficiency. Additionally, the maximum efficiency depends on the friction coefficient of the contact surface, the inner cone angle of the barrel, and the diameter and quantity of the CFRP tendons. The necessary conditions for the safety of the CFRP tendon anchorage zone are carefully obtained based on the Tsai–Wu failure criterion. It is concluded that the compressive stress of CFRP tendons in the anchorage zone should gradually increase from the load-bearing end to the no-loading end. Additionally, the relations among the anchorage efficiency coefficient and the CFRP tendon diameter d, the anchorage length l, the dip angle of LTM external conical surface α, and the friction angle β are derived based on the equivalent failure principle. The CFRP cables of four specifications (i.e., with Φ12, Φ19, Φ37, and Φ121 tendons) are designed under theoretical guidance, and eight static tests are carried out for more verification studies. The test results indicate that the anchorage efficiency coefficient of designed anchorage devices can be over 90%, and even up to 96.8%. Further, the failure modes are divergent destruction, which verifies the reliability of friction-based anchorage devices and provides a solid theoretical foundation for the design and engineering applications of CFRP cables

    Optimization of Sparse Cross Array Synthesis via Perturbed Convex Optimization

    No full text
    Three-dimensional (3-D) imaging sonar systems require large planar arrays, which incur hardware costs. In contrast, a cross array consisting of two perpendicular linear arrays can also support 3-D imaging while dramatically reducing the number of sensors. Moreover, the use of an aperiodic sparse array can further reduce the number of sensors efficiently. In this paper, an optimized method for sparse cross array synthesis is proposed. First, the beamforming of a cross array based on a multi-frequency algorithm is simplified for both near-field and far-field. Next, a perturbed convex optimization algorithm is proposed for sparse cross array synthesis. The method based on convex optimization utilizes a first-order Taylor expansion to create position perturbations that can optimize the beam pattern and minimize the number of active sensors. Finally, a cross array with 100 + 100 sensors is employed from which a sparse cross array with 45 + 45 sensors is obtained via the proposed method. The experimental results show that the proposed method is more effective than existing methods for obtaining optimum results for sparse cross array synthesis in both the near-field and far-field
    • …
    corecore